Netmask Expanded (/24 through /32)

Hopefully below will explain how Netmask works

 

Netmask 255.255.255.0 /24 (11111111.11111111.11111111.00000000)

1 subnet

LOW IP       HI IP

x.x.x.0      x.x.x.255

 

Netmask 255.255.255.128 /25 (11111111.11111111.11111111.10000000)

2 subnets

LOW IP       HI IP

x.x.x.0      x.x.x.127

x.x.x.128    x.x.x.255

 

Netmask 255.255.255.192 /26 (11111111.11111111.11111111.11000000)

4 subnets

x.x.x.0      x.x.x.63

x.x.x.64     x.x.x.127

x.x.x.128    x.x.x.191

x.x.x.192    x.x.x.255

 

Netmask 255.255.255.224 /27 (11111111.11111111.11111111.11100000)

8 subnets

x.x.x.0      x.x.x.31

x.x.x.32     x.x.x.63

x.x.x.64     x.x.x.95

x.x.x.96     x.x.x.127

x.x.x.128    x.x.x.159

x.x.x.160    x.x.x.191

x.x.x.192    x.x.x.223

x.x.x.224    x.x.x.255

 

Netmask 255.255.255.240 /28 (11111111.11111111.11111111.11110000)

16 subnets

x.x.x.0      x.x.x.15

x.x.x.16     x.x.x.31

x.x.x.32     x.x.x.47

x.x.x.48     x.x.x.63

x.x.x.64     x.x.x.79

x.x.x.80     x.x.x.95

x.x.x.96     x.x.x.111

x.x.x.112    x.x.x.127

x.x.x.128    x.x.x.143

x.x.x.144    x.x.x.159

x.x.x.160    x.x.x.175

x.x.x.176    x.x.x.191

x.x.x.192    x.x.x.207

x.x.x.208    x.x.x.223

x.x.x.224    x.x.x.239

x.x.x.240    x.x.x.255

 

Netmask 255.255.255.248 /29 (11111111.11111111.11111111.11111000)

32 subnets

x.x.x.0      x.x.x.7

x.x.x.8      x.x.x.15

x.x.x.16     x.x.x.23

x.x.x.24     x.x.x.31

x.x.x.32     x.x.x.39

x.x.x.40     x.x.x.47

x.x.x.48     x.x.x.55

x.x.x.56     x.x.x.63

x.x.x.64     x.x.x.71

x.x.x.72     x.x.x.79

x.x.x.80     x.x.x.87

x.x.x.88     x.x.x.95

x.x.x.96     x.x.x.103

x.x.x.104    x.x.x.111

x.x.x.112    x.x.x.119

x.x.x.120    x.x.x.127

x.x.x.128    x.x.x.135

x.x.x.136    x.x.x.143

x.x.x.144    x.x.x.151

x.x.x.152    x.x.x.159

x.x.x.160    x.x.x.167

x.x.x.168    x.x.x.175

x.x.x.176    x.x.x.183

x.x.x.184    x.x.x.191

x.x.x.192    x.x.x.199

x.x.x.200    x.x.x.207

x.x.x.208    x.x.x.215

x.x.x.216    x.x.x.223

x.x.x.224    x.x.x.231

x.x.x.232    x.x.x.239

x.x.x.240    x.x.x.247

x.x.x.248    x.x.x.255

 

Netmask 255.255.255.252 /30 (11111111.11111111.11111111.11111100)

64 subnets

LOW IP       HI IP

x.x.x.0      x.x.x.3

x.x.x.4      x.x.x.7

x.x.x.8      x.x.x.11

x.x.x.12     x.x.x.15

x.x.x.16     x.x.x.19

x.x.x.20     x.x.x.23

x.x.x.24     x.x.x.27

x.x.x.28     x.x.x.31

x.x.x.32     x.x.x.35

x.x.x.36     x.x.x.39

x.x.x.40     x.x.x.43

x.x.x.44     x.x.x.47

x.x.x.48     x.x.x.51

x.x.x.52     x.x.x.55

x.x.x.56     x.x.x.59

x.x.x.60     x.x.x.63

x.x.x.64     x.x.x.67

x.x.x.68     x.x.x.71

x.x.x.72     x.x.x.75

x.x.x.76     x.x.x.79

x.x.x.80     x.x.x.83

x.x.x.84     x.x.x.87

x.x.x.88     x.x.x.91

x.x.x.92     x.x.x.95

x.x.x.96     x.x.x.99

x.x.x.100    x.x.x.103

x.x.x.104    x.x.x.107

x.x.x.108    x.x.x.111

x.x.x.112    x.x.x.115

x.x.x.116    x.x.x.119

x.x.x.120    x.x.x.123

x.x.x.124    x.x.x.127

x.x.x.128    x.x.x.131

x.x.x.132    x.x.x.135

x.x.x.136    x.x.x.139

x.x.x.140    x.x.x.143

x.x.x.144    x.x.x.147

x.x.x.148    x.x.x.151

x.x.x.152    x.x.x.155

x.x.x.156    x.x.x.159

x.x.x.160    x.x.x.163

x.x.x.164    x.x.x.167

x.x.x.168    x.x.x.171

x.x.x.172    x.x.x.175

x.x.x.176    x.x.x.179

x.x.x.180    x.x.x.183

x.x.x.184    x.x.x.187

x.x.x.188    x.x.x.191

x.x.x.192    x.x.x.195

x.x.x.196    x.x.x.199

x.x.x.200    x.x.x.203

x.x.x.204    x.x.x.207

x.x.x.208    x.x.x.211

x.x.x.212    x.x.x.215

x.x.x.216    x.x.x.219

x.x.x.220    x.x.x.223

x.x.x.224    x.x.x.227

x.x.x.228    x.x.x.231

x.x.x.232    x.x.x.235

x.x.x.236    x.x.x.239

x.x.x.240    x.x.x.243

x.x.x.244    x.x.x.247

x.x.x.248    x.x.x.251

x.x.x.252    x.x.x.255

 

net mask:

1111 1100 == 252

--------------------------------------------------------------------------------

 

Pozar's two-bit(tm) addressing

 

4-bit  m m m m

2-bit  m m

(.1)   0 0 0 0  0 0 0 1             (.2) 0 0 0 0  0 0 1 0

(.17)  0 0 0 1  0 0 0 1           (.18) 0 0 0 1  0 0 1 0

(.33)  0 0 1 0  0 0 0 1           (.34) 0 0 1 0  0 0 1 0

(.49)  0 0 1 1  0 0 0 1           (.50) 0 0 1 1  0 0 1 0

(.65)  0 1 0 0  0 0 0 1           (.66) 0 1 0 0  0 0 1 0

(.129) 1 0 0 0  0 0 0 1         (.130) 1 0 0 0  0 0 1 0

(.193) 1 1 0 0  0 0 0 1         (.194) 1 1 0 0  0 0 1 0

(.225) 1 1 1 0  0 0 0 1         (.226) 1 1 1 0  0 0 1 0

--------------------------------------------------------------------------------

 

Younker's tables

 

Here's a table showing the relationship between the / notation, the byte

notation, and the corresponding binary numbers (with a dot every eight

digits) for the 32 bit addresses.  I've thrown in a count of how many

Class A/B/C networks the larger networks encompass.

 

/ Notation   Binary                                                   Byte Notation     #Class

----------   ------------------------------------------------  --------------         ------

/0             00000000.00000000.00000000.00000000   0.0.0.0               256 A

/1             10000000.00000000.00000000.00000000   128.0.0.0            128 A

/2             11000000.00000000.00000000.00000000   192.0.0.0              64 A

/3             11100000.00000000.00000000.00000000   224.0.0.0              32 A

/4             11110000.00000000.00000000.00000000   240.0.0.0              16 A

/5             11111000.00000000.00000000.00000000   248.0.0.0                8 A

/6             11111100.00000000.00000000.00000000   252.0.0.0                4 A

/7             11111110.00000000.00000000.00000000   254.0.0.0                2 A

/8             11111111.00000000.00000000.00000000   255.0.0.0                1 A

/9             11111111.10000000.00000000.00000000   255.128.0.0         128 B

/10           11111111.11000000.00000000.00000000   255.192.0.0           64 B

/11           11111111.11100000.00000000.00000000   255.224.0.0           32 B

/12           11111111.11110000.00000000.00000000   255.240.0.0           16 B

/13           11111111.11111000.00000000.00000000   255.248.0.0             8 B

/14           11111111.11111100.00000000.00000000   255.252.0.0             4 B

/15           11111111.11111110.00000000.00000000   255.254.0.0             2 B

/16           11111111.11111111.00000000.00000000   255.255.0.0             1 B

/17           11111111.11111111.10000000.00000000   255.255.128.0      128 C

/18           11111111.11111111.11000000.00000000   255.255.192.0        64 C

/19           11111111.11111111.11100000.00000000   255.255.224.0        32 C

/20           11111111.11111111.11110000.00000000   255.255.240.0        16 C

/21           11111111.11111111.11111000.00000000   255.255.248.0         8 C

/22           11111111.11111111.11111100.00000000   255.255.252.0         4 C

/23           11111111.11111111.11111110.00000000   255.255.254.0         2 C

/24           11111111.11111111.11111111.00000000   255.255.255.0         1 C

/25           11111111.11111111.11111111.10000000   255.255.255.128

/26           11111111.11111111.11111111.11000000   255.255.255.192

/27           11111111.11111111.11111111.11100000   255.255.255.224

/28           11111111.11111111.11111111.11110000   255.255.255.240

/29           11111111.11111111.11111111.11111000   255.255.255.248

/30           11111111.11111111.11111111.11111100   255.255.255.252

/31           11111111.11111111.11111111.11111110   255.255.255.254

/32           11111111.11111111.11111111.11111111   255.255.255.255

 

Here's an example of how to get from the binary number 11000000 to

the decimal number (192).

 

11000000 =>  128*1 + 64*1 + 32*0 + 16*0 + 8*0 + 4*0 + 2*0 + 1*0

             = 128 + 64   + 0    + 0    + 0   + 0   + 0   +   0

             = 128 + 64

             = 192

 

Another example (using an arbitrarily chosen binary number):

 

10000100 => 128*1 + 64*0 + 32*0 + 16*0 + 8*0 + 4*1 + 2*0 + 1*0

            = 128 + 0    + 0    + 0    + 0   + 4   + 0   +   0

            = 128 + 4

            = 132